From 1ad2f56662b72f11a2a4b3711c95a9017ec36228 Mon Sep 17 00:00:00 2001 From: Rick L Bird Date: Fri, 22 Apr 2011 14:07:16 -0400 Subject: [PATCH] Added SFMT files --- hdrs/SFMT.h | 168 +++++++++++++ src/SFMT.c | 667 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 835 insertions(+) create mode 100644 hdrs/SFMT.h create mode 100644 src/SFMT.c diff --git a/hdrs/SFMT.h b/hdrs/SFMT.h new file mode 100644 index 0000000..8729b62 --- /dev/null +++ b/hdrs/SFMT.h @@ -0,0 +1,168 @@ +/** + * @file SFMT.h + * + * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom + * number generator + * + * @author Mutsuo Saito (Hiroshima University) + * @author Makoto Matsumoto (Hiroshima University) + * + * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima + * University. All rights reserved. + * + * The new BSD License is applied to this software. + * see LICENSE.txt + * + * @note We assume that your system has inttypes.h. If your system + * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t, + * and you have to define PRIu64 and PRIx64 in this file as follows: + * @verbatim + typedef unsigned int uint32_t + typedef unsigned long long uint64_t + #define PRIu64 "llu" + #define PRIx64 "llx" +@endverbatim + * uint32_t must be exactly 32-bit unsigned integer type (no more, no + * less), and uint64_t must be exactly 64-bit unsigned integer type. + * PRIu64 and PRIx64 are used for printf function to print 64-bit + * unsigned int and 64-bit unsigned int in hexadecimal format. + */ + +#ifndef SFMT_H +#define SFMT_H + +#include + +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) +#include +#elif defined(_MSC_VER) || defined(__BORLANDC__) +typedef unsigned int uint32_t; +typedef unsigned __int64 uint64_t; +#define inline __inline +#else +#include +#if defined(__GNUC__) +#define inline __inline__ +#endif +#endif + +#ifndef PRIu64 +#if defined(_MSC_VER) || defined(__BORLANDC__) +#define PRIu64 "I64u" +#define PRIx64 "I64x" +#else +#define PRIu64 "llu" +#define PRIx64 "llx" +#endif +#endif + +#if defined(__GNUC__) +#define ALWAYSINLINE __attribute__((always_inline)) +#else +#define ALWAYSINLINE +#endif + +#if defined(_MSC_VER) +#if _MSC_VER >= 1200 +#define PRE_ALWAYS __forceinline +#else +#define PRE_ALWAYS inline +#endif +#else +#define PRE_ALWAYS inline +#endif + +uint32_t gen_rand32(void); +uint64_t gen_rand64(void); +void fill_array32(uint32_t *array, int size); +void fill_array64(uint64_t *array, int size); +void init_gen_rand(uint32_t seed); +void init_by_array(uint32_t *init_key, int key_length); +const char *get_idstring(void); +int get_min_array_size32(void); +int get_min_array_size64(void); + +/* These real versions are due to Isaku Wada */ +/** generates a random number on [0,1]-real-interval */ +inline static double +to_real1(uint32_t v) +{ + return v * (1.0 / 4294967295.0); + /* divided by 2^32-1 */ +} + +/** generates a random number on [0,1]-real-interval */ +inline static double +genrand_real1(void) +{ + return to_real1(gen_rand32()); +} + +/** generates a random number on [0,1)-real-interval */ +inline static double +to_real2(uint32_t v) +{ + return v * (1.0 / 4294967296.0); + /* divided by 2^32 */ +} + +/** generates a random number on [0,1)-real-interval */ +inline static double +genrand_real2(void) +{ + return to_real2(gen_rand32()); +} + +/** generates a random number on (0,1)-real-interval */ +inline static double +to_real3(uint32_t v) +{ + return (((double) v) + 0.5) * (1.0 / 4294967296.0); + /* divided by 2^32 */ +} + +/** generates a random number on (0,1)-real-interval */ +inline static double +genrand_real3(void) +{ + return to_real3(gen_rand32()); +} + +/** These real versions are due to Isaku Wada */ + +/** generates a random number on [0,1) with 53-bit resolution*/ +inline static double +to_res53(uint64_t v) +{ + return v * (1.0 / 18446744073709551616.0L); +} + +/** generates a random number on [0,1) with 53-bit resolution from two + * 32 bit integers */ +inline static double +to_res53_mix(uint32_t x, uint32_t y) +{ + return to_res53(x | ((uint64_t) y << 32)); +} + +/** generates a random number on [0,1) with 53-bit resolution + */ +inline static double +genrand_res53(void) +{ + return to_res53(gen_rand64()); +} + +/** generates a random number on [0,1) with 53-bit resolution + using 32bit integer. + */ +inline static double +genrand_res53_mix(void) +{ + uint32_t x, y; + + x = gen_rand32(); + y = gen_rand32(); + return to_res53_mix(x, y); +} +#endif diff --git a/src/SFMT.c b/src/SFMT.c new file mode 100644 index 0000000..80a31ef --- /dev/null +++ b/src/SFMT.c @@ -0,0 +1,667 @@ +/** + * @file SFMT.c + * @brief SIMD oriented Fast Mersenne Twister(SFMT) + * + * @author Mutsuo Saito (Hiroshima University) + * @author Makoto Matsumoto (Hiroshima University) + * + * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima + * University. All rights reserved. + * + * The new BSD License is applied to this software, see LICENSE.txt + */ +#include +#include + +#include "config.h" /* Added by Shawn for Penn */ + +#include "SFMT.h" +#include "SFMT-params.h" + +#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64) +#define BIG_ENDIAN64 1 +#endif +#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64) +#define BIG_ENDIAN64 1 +#endif +#if defined(ONLY64) && !defined(BIG_ENDIAN64) +#if defined(__GNUC__) +#error "-DONLY64 must be specified with -DBIG_ENDIAN64" +#endif +#undef ONLY64 +#endif +/*------------------------------------------------------ + 128-bit SIMD data type for Altivec, SSE2 or standard C + ------------------------------------------------------*/ +#if defined(HAVE_ALTIVEC) +#if !defined(__APPLE__) +#include +#endif +/** 128-bit data structure */ +union W128_T { + vector unsigned int s; + uint32_t u[4]; +}; +/** 128-bit data type */ +typedef union W128_T w128_t; + +#elif defined(HAVE_SSE2) +#include + +/** 128-bit data structure */ +union W128_T { + __m128i si; + uint32_t u[4]; +}; +/** 128-bit data type */ +typedef union W128_T w128_t; + +#else + +/** 128-bit data structure */ +struct W128_T { + uint32_t u[4]; +}; +/** 128-bit data type */ +typedef struct W128_T w128_t; + +#endif + +/*-------------------------------------- + FILE GLOBAL VARIABLES + internal state, index counter and flag + --------------------------------------*/ +/** the 128-bit internal state array */ +static w128_t sfmt[N]; +/** the 32bit integer pointer to the 128-bit internal state array */ +static uint32_t *psfmt32 = &sfmt[0].u[0]; +#if !defined(BIG_ENDIAN64) || defined(ONLY64) +/** the 64bit integer pointer to the 128-bit internal state array */ +static uint64_t *psfmt64 = (uint64_t *) &sfmt[0].u[0]; +#endif +/** index counter to the 32-bit internal state array */ +static int idx; +/** a flag: it is 0 if and only if the internal state is not yet + * initialized. */ +static int initialized = 0; +/** a parity check vector which certificate the period of 2^{MEXP} */ +static uint32_t parity[4] = { PARITY1, PARITY2, PARITY3, PARITY4 }; + +/*---------------- + STATIC FUNCTIONS + ----------------*/ +inline static int idxof(int i); +inline static void rshift128(w128_t *out, w128_t const *in, int shift); +inline static void lshift128(w128_t *out, w128_t const *in, int shift); +inline static void gen_rand_all(void); +inline static void gen_rand_array(w128_t *array, int size); +inline static uint32_t func1(uint32_t x); +inline static uint32_t func2(uint32_t x); +static void period_certification(void); +#if defined(BIG_ENDIAN64) && !defined(ONLY64) +inline static void swap(w128_t *array, int size); +#endif + +#if defined(HAVE_ALTIVEC) +#include "SFMT-alti.h" +#elif defined(HAVE_SSE2) +#include "SFMT-sse2.h" +#endif + +/** + * This function simulate a 64-bit index of LITTLE ENDIAN + * in BIG ENDIAN machine. + */ +#ifdef ONLY64 +inline static int +idxof(int i) +{ + return i ^ 1; +} +#else +inline static int +idxof(int i) +{ + return i; +} +#endif +/** + * This function simulates SIMD 128-bit right shift by the standard C. + * The 128-bit integer given in in is shifted by (shift * 8) bits. + * This function simulates the LITTLE ENDIAN SIMD. + * @param out the output of this function + * @param in the 128-bit data to be shifted + * @param shift the shift value + */ +#ifdef ONLY64 +inline static void +rshift128(w128_t *out, w128_t const *in, int shift) +{ + uint64_t th, tl, oh, ol; + + th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]); + tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]); + + oh = th >> (shift * 8); + ol = tl >> (shift * 8); + ol |= th << (64 - shift * 8); + out->u[0] = (uint32_t) (ol >> 32); + out->u[1] = (uint32_t) ol; + out->u[2] = (uint32_t) (oh >> 32); + out->u[3] = (uint32_t) oh; +} +#else +inline static void +rshift128(w128_t *out, w128_t const *in, int shift) +{ + uint64_t th, tl, oh, ol; + + th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]); + tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]); + + oh = th >> (shift * 8); + ol = tl >> (shift * 8); + ol |= th << (64 - shift * 8); + out->u[1] = (uint32_t) (ol >> 32); + out->u[0] = (uint32_t) ol; + out->u[3] = (uint32_t) (oh >> 32); + out->u[2] = (uint32_t) oh; +} +#endif +/** + * This function simulates SIMD 128-bit left shift by the standard C. + * The 128-bit integer given in in is shifted by (shift * 8) bits. + * This function simulates the LITTLE ENDIAN SIMD. + * @param out the output of this function + * @param in the 128-bit data to be shifted + * @param shift the shift value + */ +#ifdef ONLY64 +inline static void +lshift128(w128_t *out, w128_t const *in, int shift) +{ + uint64_t th, tl, oh, ol; + + th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]); + tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]); + + oh = th << (shift * 8); + ol = tl << (shift * 8); + oh |= tl >> (64 - shift * 8); + out->u[0] = (uint32_t) (ol >> 32); + out->u[1] = (uint32_t) ol; + out->u[2] = (uint32_t) (oh >> 32); + out->u[3] = (uint32_t) oh; +} +#else +inline static void +lshift128(w128_t *out, w128_t const *in, int shift) +{ + uint64_t th, tl, oh, ol; + + th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]); + tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]); + + oh = th << (shift * 8); + ol = tl << (shift * 8); + oh |= tl >> (64 - shift * 8); + out->u[1] = (uint32_t) (ol >> 32); + out->u[0] = (uint32_t) ol; + out->u[3] = (uint32_t) (oh >> 32); + out->u[2] = (uint32_t) oh; +} +#endif + +/** + * This function represents the recursion formula. + * @param r output + * @param a a 128-bit part of the internal state array + * @param b a 128-bit part of the internal state array + * @param c a 128-bit part of the internal state array + * @param d a 128-bit part of the internal state array + */ +#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) +#ifdef ONLY64 +inline static void +do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d) +{ + w128_t x; + w128_t y; + + lshift128(&x, a, SL2); + rshift128(&y, c, SR2); + r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0] + ^ (d->u[0] << SL1); + r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1] + ^ (d->u[1] << SL1); + r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2] + ^ (d->u[2] << SL1); + r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3] + ^ (d->u[3] << SL1); +} +#else +inline static void +do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d) +{ + w128_t x; + w128_t y; + + lshift128(&x, a, SL2); + rshift128(&y, c, SR2); + r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0] + ^ (d->u[0] << SL1); + r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1] + ^ (d->u[1] << SL1); + r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2] + ^ (d->u[2] << SL1); + r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3] + ^ (d->u[3] << SL1); +} +#endif +#endif + +#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) +/** + * This function fills the internal state array with pseudorandom + * integers. + */ +inline static void +gen_rand_all(void) +{ + int i; + w128_t *r1, *r2; + + r1 = &sfmt[N - 2]; + r2 = &sfmt[N - 1]; + for (i = 0; i < N - POS1; i++) { + do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2); + r1 = r2; + r2 = &sfmt[i]; + } + for (; i < N; i++) { + do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2); + r1 = r2; + r2 = &sfmt[i]; + } +} + +/** + * This function fills the user-specified array with pseudorandom + * integers. + * + * @param array an 128-bit array to be filled by pseudorandom numbers. + * @param size number of 128-bit pseudorandom numbers to be generated. + */ +inline static void +gen_rand_array(w128_t *array, int size) +{ + int i, j; + w128_t *r1, *r2; + + r1 = &sfmt[N - 2]; + r2 = &sfmt[N - 1]; + for (i = 0; i < N - POS1; i++) { + do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2); + r1 = r2; + r2 = &array[i]; + } + for (; i < N; i++) { + do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2); + r1 = r2; + r2 = &array[i]; + } + for (; i < size - N; i++) { + do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); + r1 = r2; + r2 = &array[i]; + } + for (j = 0; j < 2 * N - size; j++) { + sfmt[j] = array[j + size - N]; + } + for (; i < size; i++, j++) { + do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); + r1 = r2; + r2 = &array[i]; + sfmt[j] = array[i]; + } +} +#endif + +#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC) +inline static void +swap(w128_t *array, int size) +{ + int i; + uint32_t x, y; + + for (i = 0; i < size; i++) { + x = array[i].u[0]; + y = array[i].u[2]; + array[i].u[0] = array[i].u[1]; + array[i].u[2] = array[i].u[3]; + array[i].u[1] = x; + array[i].u[3] = y; + } +} +#endif +/** + * This function represents a function used in the initialization + * by init_by_array + * @param x 32-bit integer + * @return 32-bit integer + */ +static uint32_t +func1(uint32_t x) +{ + return (x ^ (x >> 27)) * (uint32_t) 1664525UL; +} + +/** + * This function represents a function used in the initialization + * by init_by_array + * @param x 32-bit integer + * @return 32-bit integer + */ +static uint32_t +func2(uint32_t x) +{ + return (x ^ (x >> 27)) * (uint32_t) 1566083941UL; +} + +/** + * This function certificate the period of 2^{MEXP} + */ +static void +period_certification(void) +{ + int inner = 0; + int i, j; + uint32_t work; + + for (i = 0; i < 4; i++) + inner ^= psfmt32[idxof(i)] & parity[i]; + for (i = 16; i > 0; i >>= 1) + inner ^= inner >> i; + inner &= 1; + /* check OK */ + if (inner == 1) { + return; + } + /* check NG, and modification */ + for (i = 0; i < 4; i++) { + work = 1; + for (j = 0; j < 32; j++) { + if ((work & parity[i]) != 0) { + psfmt32[idxof(i)] ^= work; + return; + } + work = work << 1; + } + } +} + +/*---------------- + PUBLIC FUNCTIONS + ----------------*/ +/** + * This function returns the identification string. + * The string shows the word size, the Mersenne exponent, + * and all parameters of this generator. + */ +const char * +get_idstring(void) +{ + return IDSTR; +} + +/** + * This function returns the minimum size of array used for \b + * fill_array32() function. + * @return minimum size of array used for fill_array32() function. + */ +int +get_min_array_size32(void) +{ + return N32; +} + +/** + * This function returns the minimum size of array used for \b + * fill_array64() function. + * @return minimum size of array used for fill_array64() function. + */ +int +get_min_array_size64(void) +{ + return N64; +} + +#ifndef ONLY64 +/** + * This function generates and returns 32-bit pseudorandom number. + * init_gen_rand or init_by_array must be called before this function. + * @return 32-bit pseudorandom number + */ +uint32_t +gen_rand32(void) +{ + uint32_t r; + + assert(initialized); + if (idx >= N32) { + gen_rand_all(); + idx = 0; + } + r = psfmt32[idx++]; + return r; +} +#endif +/** + * This function generates and returns 64-bit pseudorandom number. + * init_gen_rand or init_by_array must be called before this function. + * The function gen_rand64 should not be called after gen_rand32, + * unless an initialization is again executed. + * @return 64-bit pseudorandom number + */ +uint64_t +gen_rand64(void) +{ +#if defined(BIG_ENDIAN64) && !defined(ONLY64) + uint32_t r1, r2; +#else + uint64_t r; +#endif + + assert(initialized); + assert(idx % 2 == 0); + + if (idx >= N32) { + gen_rand_all(); + idx = 0; + } +#if defined(BIG_ENDIAN64) && !defined(ONLY64) + r1 = psfmt32[idx]; + r2 = psfmt32[idx + 1]; + idx += 2; + return ((uint64_t) r2 << 32) | r1; +#else + r = psfmt64[idx / 2]; + idx += 2; + return r; +#endif +} + +#ifndef ONLY64 +/** + * This function generates pseudorandom 32-bit integers in the + * specified array[] by one call. The number of pseudorandom integers + * is specified by the argument size, which must be at least 624 and a + * multiple of four. The generation by this function is much faster + * than the following gen_rand function. + * + * For initialization, init_gen_rand or init_by_array must be called + * before the first call of this function. This function can not be + * used after calling gen_rand function, without initialization. + * + * @param array an array where pseudorandom 32-bit integers are filled + * by this function. The pointer to the array must be \b "aligned" + * (namely, must be a multiple of 16) in the SIMD version, since it + * refers to the address of a 128-bit integer. In the standard C + * version, the pointer is arbitrary. + * + * @param size the number of 32-bit pseudorandom integers to be + * generated. size must be a multiple of 4, and greater than or equal + * to (MEXP / 128 + 1) * 4. + * + * @note \b memalign or \b posix_memalign is available to get aligned + * memory. Mac OSX doesn't have these functions, but \b malloc of OSX + * returns the pointer to the aligned memory block. + */ +void +fill_array32(uint32_t *array, int size) +{ + assert(initialized); + assert(idx == N32); + assert(size % 4 == 0); + assert(size >= N32); + + gen_rand_array((w128_t *) array, size / 4); + idx = N32; +} +#endif + +/** + * This function generates pseudorandom 64-bit integers in the + * specified array[] by one call. The number of pseudorandom integers + * is specified by the argument size, which must be at least 312 and a + * multiple of two. The generation by this function is much faster + * than the following gen_rand function. + * + * For initialization, init_gen_rand or init_by_array must be called + * before the first call of this function. This function can not be + * used after calling gen_rand function, without initialization. + * + * @param array an array where pseudorandom 64-bit integers are filled + * by this function. The pointer to the array must be "aligned" + * (namely, must be a multiple of 16) in the SIMD version, since it + * refers to the address of a 128-bit integer. In the standard C + * version, the pointer is arbitrary. + * + * @param size the number of 64-bit pseudorandom integers to be + * generated. size must be a multiple of 2, and greater than or equal + * to (MEXP / 128 + 1) * 2 + * + * @note \b memalign or \b posix_memalign is available to get aligned + * memory. Mac OSX doesn't have these functions, but \b malloc of OSX + * returns the pointer to the aligned memory block. + */ +void +fill_array64(uint64_t *array, int size) +{ + assert(initialized); + assert(idx == N32); + assert(size % 2 == 0); + assert(size >= N64); + + gen_rand_array((w128_t *) array, size / 2); + idx = N32; + +#if defined(BIG_ENDIAN64) && !defined(ONLY64) + swap((w128_t *) array, size / 2); +#endif +} + +/** + * This function initializes the internal state array with a 32-bit + * integer seed. + * + * @param seed a 32-bit integer used as the seed. + */ +void +init_gen_rand(uint32_t seed) +{ + int i; + + psfmt32[idxof(0)] = seed; + for (i = 1; i < N32; i++) { + psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)] + ^ (psfmt32[idxof(i - 1)] >> 30)) + + i; + } + idx = N32; + period_certification(); + initialized = 1; +} + +/** + * This function initializes the internal state array, + * with an array of 32-bit integers used as the seeds + * @param init_key the array of 32-bit integers, used as a seed. + * @param key_length the length of init_key. + */ +void +init_by_array(uint32_t *init_key, int key_length) +{ + int i, j, count; + uint32_t r; + int lag; + int mid; + int size = N * 4; + + if (size >= 623) { + lag = 11; + } else if (size >= 68) { + lag = 7; + } else if (size >= 39) { + lag = 5; + } else { + lag = 3; + } + mid = (size - lag) / 2; + + memset(sfmt, 0x8b, sizeof(sfmt)); + if (key_length + 1 > N32) { + count = key_length + 1; + } else { + count = N32; + } + r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)] + ^ psfmt32[idxof(N32 - 1)]); + psfmt32[idxof(mid)] += r; + r += key_length; + psfmt32[idxof(mid + lag)] += r; + psfmt32[idxof(0)] = r; + + count--; + for (i = 1, j = 0; (j < count) && (j < key_length); j++) { + r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] + ^ psfmt32[idxof((i + N32 - 1) % N32)]); + psfmt32[idxof((i + mid) % N32)] += r; + r += init_key[j] + i; + psfmt32[idxof((i + mid + lag) % N32)] += r; + psfmt32[idxof(i)] = r; + i = (i + 1) % N32; + } + for (; j < count; j++) { + r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] + ^ psfmt32[idxof((i + N32 - 1) % N32)]); + psfmt32[idxof((i + mid) % N32)] += r; + r += i; + psfmt32[idxof((i + mid + lag) % N32)] += r; + psfmt32[idxof(i)] = r; + i = (i + 1) % N32; + } + for (j = 0; j < N32; j++) { + r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)] + + psfmt32[idxof((i + N32 - 1) % N32)]); + psfmt32[idxof((i + mid) % N32)] ^= r; + r -= i; + psfmt32[idxof((i + mid + lag) % N32)] ^= r; + psfmt32[idxof(i)] = r; + i = (i + 1) % N32; + } + + idx = N32; + period_certification(); + initialized = 1; +} -- 2.30.2