--- /dev/null
+/**
+ * @file SFMT.h
+ *
+ * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
+ * number generator
+ *
+ * @author Mutsuo Saito (Hiroshima University)
+ * @author Makoto Matsumoto (Hiroshima University)
+ *
+ * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
+ * University. All rights reserved.
+ *
+ * The new BSD License is applied to this software.
+ * see LICENSE.txt
+ *
+ * @note We assume that your system has inttypes.h. If your system
+ * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
+ * and you have to define PRIu64 and PRIx64 in this file as follows:
+ * @verbatim
+ typedef unsigned int uint32_t
+ typedef unsigned long long uint64_t
+ #define PRIu64 "llu"
+ #define PRIx64 "llx"
+@endverbatim
+ * uint32_t must be exactly 32-bit unsigned integer type (no more, no
+ * less), and uint64_t must be exactly 64-bit unsigned integer type.
+ * PRIu64 and PRIx64 are used for printf function to print 64-bit
+ * unsigned int and 64-bit unsigned int in hexadecimal format.
+ */
+
+#ifndef SFMT_H
+#define SFMT_H
+
+#include <stdio.h>
+
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
+#include <inttypes.h>
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+typedef unsigned int uint32_t;
+typedef unsigned __int64 uint64_t;
+#define inline __inline
+#else
+#include <inttypes.h>
+#if defined(__GNUC__)
+#define inline __inline__
+#endif
+#endif
+
+#ifndef PRIu64
+#if defined(_MSC_VER) || defined(__BORLANDC__)
+#define PRIu64 "I64u"
+#define PRIx64 "I64x"
+#else
+#define PRIu64 "llu"
+#define PRIx64 "llx"
+#endif
+#endif
+
+#if defined(__GNUC__)
+#define ALWAYSINLINE __attribute__((always_inline))
+#else
+#define ALWAYSINLINE
+#endif
+
+#if defined(_MSC_VER)
+#if _MSC_VER >= 1200
+#define PRE_ALWAYS __forceinline
+#else
+#define PRE_ALWAYS inline
+#endif
+#else
+#define PRE_ALWAYS inline
+#endif
+
+uint32_t gen_rand32(void);
+uint64_t gen_rand64(void);
+void fill_array32(uint32_t *array, int size);
+void fill_array64(uint64_t *array, int size);
+void init_gen_rand(uint32_t seed);
+void init_by_array(uint32_t *init_key, int key_length);
+const char *get_idstring(void);
+int get_min_array_size32(void);
+int get_min_array_size64(void);
+
+/* These real versions are due to Isaku Wada */
+/** generates a random number on [0,1]-real-interval */
+inline static double
+to_real1(uint32_t v)
+{
+ return v * (1.0 / 4294967295.0);
+ /* divided by 2^32-1 */
+}
+
+/** generates a random number on [0,1]-real-interval */
+inline static double
+genrand_real1(void)
+{
+ return to_real1(gen_rand32());
+}
+
+/** generates a random number on [0,1)-real-interval */
+inline static double
+to_real2(uint32_t v)
+{
+ return v * (1.0 / 4294967296.0);
+ /* divided by 2^32 */
+}
+
+/** generates a random number on [0,1)-real-interval */
+inline static double
+genrand_real2(void)
+{
+ return to_real2(gen_rand32());
+}
+
+/** generates a random number on (0,1)-real-interval */
+inline static double
+to_real3(uint32_t v)
+{
+ return (((double) v) + 0.5) * (1.0 / 4294967296.0);
+ /* divided by 2^32 */
+}
+
+/** generates a random number on (0,1)-real-interval */
+inline static double
+genrand_real3(void)
+{
+ return to_real3(gen_rand32());
+}
+
+/** These real versions are due to Isaku Wada */
+
+/** generates a random number on [0,1) with 53-bit resolution*/
+inline static double
+to_res53(uint64_t v)
+{
+ return v * (1.0 / 18446744073709551616.0L);
+}
+
+/** generates a random number on [0,1) with 53-bit resolution from two
+ * 32 bit integers */
+inline static double
+to_res53_mix(uint32_t x, uint32_t y)
+{
+ return to_res53(x | ((uint64_t) y << 32));
+}
+
+/** generates a random number on [0,1) with 53-bit resolution
+ */
+inline static double
+genrand_res53(void)
+{
+ return to_res53(gen_rand64());
+}
+
+/** generates a random number on [0,1) with 53-bit resolution
+ using 32bit integer.
+ */
+inline static double
+genrand_res53_mix(void)
+{
+ uint32_t x, y;
+
+ x = gen_rand32();
+ y = gen_rand32();
+ return to_res53_mix(x, y);
+}
+#endif
--- /dev/null
+/**
+ * @file SFMT.c
+ * @brief SIMD oriented Fast Mersenne Twister(SFMT)
+ *
+ * @author Mutsuo Saito (Hiroshima University)
+ * @author Makoto Matsumoto (Hiroshima University)
+ *
+ * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
+ * University. All rights reserved.
+ *
+ * The new BSD License is applied to this software, see LICENSE.txt
+ */
+#include <string.h>
+#include <assert.h>
+
+#include "config.h" /* Added by Shawn for Penn */
+
+#include "SFMT.h"
+#include "SFMT-params.h"
+
+#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
+#define BIG_ENDIAN64 1
+#endif
+#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
+#define BIG_ENDIAN64 1
+#endif
+#if defined(ONLY64) && !defined(BIG_ENDIAN64)
+#if defined(__GNUC__)
+#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
+#endif
+#undef ONLY64
+#endif
+/*------------------------------------------------------
+ 128-bit SIMD data type for Altivec, SSE2 or standard C
+ ------------------------------------------------------*/
+#if defined(HAVE_ALTIVEC)
+#if !defined(__APPLE__)
+#include <altivec.h>
+#endif
+/** 128-bit data structure */
+union W128_T {
+ vector unsigned int s;
+ uint32_t u[4];
+};
+/** 128-bit data type */
+typedef union W128_T w128_t;
+
+#elif defined(HAVE_SSE2)
+#include <emmintrin.h>
+
+/** 128-bit data structure */
+union W128_T {
+ __m128i si;
+ uint32_t u[4];
+};
+/** 128-bit data type */
+typedef union W128_T w128_t;
+
+#else
+
+/** 128-bit data structure */
+struct W128_T {
+ uint32_t u[4];
+};
+/** 128-bit data type */
+typedef struct W128_T w128_t;
+
+#endif
+
+/*--------------------------------------
+ FILE GLOBAL VARIABLES
+ internal state, index counter and flag
+ --------------------------------------*/
+/** the 128-bit internal state array */
+static w128_t sfmt[N];
+/** the 32bit integer pointer to the 128-bit internal state array */
+static uint32_t *psfmt32 = &sfmt[0].u[0];
+#if !defined(BIG_ENDIAN64) || defined(ONLY64)
+/** the 64bit integer pointer to the 128-bit internal state array */
+static uint64_t *psfmt64 = (uint64_t *) &sfmt[0].u[0];
+#endif
+/** index counter to the 32-bit internal state array */
+static int idx;
+/** a flag: it is 0 if and only if the internal state is not yet
+ * initialized. */
+static int initialized = 0;
+/** a parity check vector which certificate the period of 2^{MEXP} */
+static uint32_t parity[4] = { PARITY1, PARITY2, PARITY3, PARITY4 };
+
+/*----------------
+ STATIC FUNCTIONS
+ ----------------*/
+inline static int idxof(int i);
+inline static void rshift128(w128_t *out, w128_t const *in, int shift);
+inline static void lshift128(w128_t *out, w128_t const *in, int shift);
+inline static void gen_rand_all(void);
+inline static void gen_rand_array(w128_t *array, int size);
+inline static uint32_t func1(uint32_t x);
+inline static uint32_t func2(uint32_t x);
+static void period_certification(void);
+#if defined(BIG_ENDIAN64) && !defined(ONLY64)
+inline static void swap(w128_t *array, int size);
+#endif
+
+#if defined(HAVE_ALTIVEC)
+#include "SFMT-alti.h"
+#elif defined(HAVE_SSE2)
+#include "SFMT-sse2.h"
+#endif
+
+/**
+ * This function simulate a 64-bit index of LITTLE ENDIAN
+ * in BIG ENDIAN machine.
+ */
+#ifdef ONLY64
+inline static int
+idxof(int i)
+{
+ return i ^ 1;
+}
+#else
+inline static int
+idxof(int i)
+{
+ return i;
+}
+#endif
+/**
+ * This function simulates SIMD 128-bit right shift by the standard C.
+ * The 128-bit integer given in in is shifted by (shift * 8) bits.
+ * This function simulates the LITTLE ENDIAN SIMD.
+ * @param out the output of this function
+ * @param in the 128-bit data to be shifted
+ * @param shift the shift value
+ */
+#ifdef ONLY64
+inline static void
+rshift128(w128_t *out, w128_t const *in, int shift)
+{
+ uint64_t th, tl, oh, ol;
+
+ th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]);
+ tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]);
+
+ oh = th >> (shift * 8);
+ ol = tl >> (shift * 8);
+ ol |= th << (64 - shift * 8);
+ out->u[0] = (uint32_t) (ol >> 32);
+ out->u[1] = (uint32_t) ol;
+ out->u[2] = (uint32_t) (oh >> 32);
+ out->u[3] = (uint32_t) oh;
+}
+#else
+inline static void
+rshift128(w128_t *out, w128_t const *in, int shift)
+{
+ uint64_t th, tl, oh, ol;
+
+ th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]);
+ tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]);
+
+ oh = th >> (shift * 8);
+ ol = tl >> (shift * 8);
+ ol |= th << (64 - shift * 8);
+ out->u[1] = (uint32_t) (ol >> 32);
+ out->u[0] = (uint32_t) ol;
+ out->u[3] = (uint32_t) (oh >> 32);
+ out->u[2] = (uint32_t) oh;
+}
+#endif
+/**
+ * This function simulates SIMD 128-bit left shift by the standard C.
+ * The 128-bit integer given in in is shifted by (shift * 8) bits.
+ * This function simulates the LITTLE ENDIAN SIMD.
+ * @param out the output of this function
+ * @param in the 128-bit data to be shifted
+ * @param shift the shift value
+ */
+#ifdef ONLY64
+inline static void
+lshift128(w128_t *out, w128_t const *in, int shift)
+{
+ uint64_t th, tl, oh, ol;
+
+ th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]);
+ tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]);
+
+ oh = th << (shift * 8);
+ ol = tl << (shift * 8);
+ oh |= tl >> (64 - shift * 8);
+ out->u[0] = (uint32_t) (ol >> 32);
+ out->u[1] = (uint32_t) ol;
+ out->u[2] = (uint32_t) (oh >> 32);
+ out->u[3] = (uint32_t) oh;
+}
+#else
+inline static void
+lshift128(w128_t *out, w128_t const *in, int shift)
+{
+ uint64_t th, tl, oh, ol;
+
+ th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]);
+ tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]);
+
+ oh = th << (shift * 8);
+ ol = tl << (shift * 8);
+ oh |= tl >> (64 - shift * 8);
+ out->u[1] = (uint32_t) (ol >> 32);
+ out->u[0] = (uint32_t) ol;
+ out->u[3] = (uint32_t) (oh >> 32);
+ out->u[2] = (uint32_t) oh;
+}
+#endif
+
+/**
+ * This function represents the recursion formula.
+ * @param r output
+ * @param a a 128-bit part of the internal state array
+ * @param b a 128-bit part of the internal state array
+ * @param c a 128-bit part of the internal state array
+ * @param d a 128-bit part of the internal state array
+ */
+#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
+#ifdef ONLY64
+inline static void
+do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d)
+{
+ w128_t x;
+ w128_t y;
+
+ lshift128(&x, a, SL2);
+ rshift128(&y, c, SR2);
+ r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
+ ^ (d->u[0] << SL1);
+ r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
+ ^ (d->u[1] << SL1);
+ r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
+ ^ (d->u[2] << SL1);
+ r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
+ ^ (d->u[3] << SL1);
+}
+#else
+inline static void
+do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d)
+{
+ w128_t x;
+ w128_t y;
+
+ lshift128(&x, a, SL2);
+ rshift128(&y, c, SR2);
+ r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
+ ^ (d->u[0] << SL1);
+ r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
+ ^ (d->u[1] << SL1);
+ r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
+ ^ (d->u[2] << SL1);
+ r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
+ ^ (d->u[3] << SL1);
+}
+#endif
+#endif
+
+#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
+/**
+ * This function fills the internal state array with pseudorandom
+ * integers.
+ */
+inline static void
+gen_rand_all(void)
+{
+ int i;
+ w128_t *r1, *r2;
+
+ r1 = &sfmt[N - 2];
+ r2 = &sfmt[N - 1];
+ for (i = 0; i < N - POS1; i++) {
+ do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
+ r1 = r2;
+ r2 = &sfmt[i];
+ }
+ for (; i < N; i++) {
+ do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
+ r1 = r2;
+ r2 = &sfmt[i];
+ }
+}
+
+/**
+ * This function fills the user-specified array with pseudorandom
+ * integers.
+ *
+ * @param array an 128-bit array to be filled by pseudorandom numbers.
+ * @param size number of 128-bit pseudorandom numbers to be generated.
+ */
+inline static void
+gen_rand_array(w128_t *array, int size)
+{
+ int i, j;
+ w128_t *r1, *r2;
+
+ r1 = &sfmt[N - 2];
+ r2 = &sfmt[N - 1];
+ for (i = 0; i < N - POS1; i++) {
+ do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
+ r1 = r2;
+ r2 = &array[i];
+ }
+ for (; i < N; i++) {
+ do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
+ r1 = r2;
+ r2 = &array[i];
+ }
+ for (; i < size - N; i++) {
+ do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
+ r1 = r2;
+ r2 = &array[i];
+ }
+ for (j = 0; j < 2 * N - size; j++) {
+ sfmt[j] = array[j + size - N];
+ }
+ for (; i < size; i++, j++) {
+ do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
+ r1 = r2;
+ r2 = &array[i];
+ sfmt[j] = array[i];
+ }
+}
+#endif
+
+#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
+inline static void
+swap(w128_t *array, int size)
+{
+ int i;
+ uint32_t x, y;
+
+ for (i = 0; i < size; i++) {
+ x = array[i].u[0];
+ y = array[i].u[2];
+ array[i].u[0] = array[i].u[1];
+ array[i].u[2] = array[i].u[3];
+ array[i].u[1] = x;
+ array[i].u[3] = y;
+ }
+}
+#endif
+/**
+ * This function represents a function used in the initialization
+ * by init_by_array
+ * @param x 32-bit integer
+ * @return 32-bit integer
+ */
+static uint32_t
+func1(uint32_t x)
+{
+ return (x ^ (x >> 27)) * (uint32_t) 1664525UL;
+}
+
+/**
+ * This function represents a function used in the initialization
+ * by init_by_array
+ * @param x 32-bit integer
+ * @return 32-bit integer
+ */
+static uint32_t
+func2(uint32_t x)
+{
+ return (x ^ (x >> 27)) * (uint32_t) 1566083941UL;
+}
+
+/**
+ * This function certificate the period of 2^{MEXP}
+ */
+static void
+period_certification(void)
+{
+ int inner = 0;
+ int i, j;
+ uint32_t work;
+
+ for (i = 0; i < 4; i++)
+ inner ^= psfmt32[idxof(i)] & parity[i];
+ for (i = 16; i > 0; i >>= 1)
+ inner ^= inner >> i;
+ inner &= 1;
+ /* check OK */
+ if (inner == 1) {
+ return;
+ }
+ /* check NG, and modification */
+ for (i = 0; i < 4; i++) {
+ work = 1;
+ for (j = 0; j < 32; j++) {
+ if ((work & parity[i]) != 0) {
+ psfmt32[idxof(i)] ^= work;
+ return;
+ }
+ work = work << 1;
+ }
+ }
+}
+
+/*----------------
+ PUBLIC FUNCTIONS
+ ----------------*/
+/**
+ * This function returns the identification string.
+ * The string shows the word size, the Mersenne exponent,
+ * and all parameters of this generator.
+ */
+const char *
+get_idstring(void)
+{
+ return IDSTR;
+}
+
+/**
+ * This function returns the minimum size of array used for \b
+ * fill_array32() function.
+ * @return minimum size of array used for fill_array32() function.
+ */
+int
+get_min_array_size32(void)
+{
+ return N32;
+}
+
+/**
+ * This function returns the minimum size of array used for \b
+ * fill_array64() function.
+ * @return minimum size of array used for fill_array64() function.
+ */
+int
+get_min_array_size64(void)
+{
+ return N64;
+}
+
+#ifndef ONLY64
+/**
+ * This function generates and returns 32-bit pseudorandom number.
+ * init_gen_rand or init_by_array must be called before this function.
+ * @return 32-bit pseudorandom number
+ */
+uint32_t
+gen_rand32(void)
+{
+ uint32_t r;
+
+ assert(initialized);
+ if (idx >= N32) {
+ gen_rand_all();
+ idx = 0;
+ }
+ r = psfmt32[idx++];
+ return r;
+}
+#endif
+/**
+ * This function generates and returns 64-bit pseudorandom number.
+ * init_gen_rand or init_by_array must be called before this function.
+ * The function gen_rand64 should not be called after gen_rand32,
+ * unless an initialization is again executed.
+ * @return 64-bit pseudorandom number
+ */
+uint64_t
+gen_rand64(void)
+{
+#if defined(BIG_ENDIAN64) && !defined(ONLY64)
+ uint32_t r1, r2;
+#else
+ uint64_t r;
+#endif
+
+ assert(initialized);
+ assert(idx % 2 == 0);
+
+ if (idx >= N32) {
+ gen_rand_all();
+ idx = 0;
+ }
+#if defined(BIG_ENDIAN64) && !defined(ONLY64)
+ r1 = psfmt32[idx];
+ r2 = psfmt32[idx + 1];
+ idx += 2;
+ return ((uint64_t) r2 << 32) | r1;
+#else
+ r = psfmt64[idx / 2];
+ idx += 2;
+ return r;
+#endif
+}
+
+#ifndef ONLY64
+/**
+ * This function generates pseudorandom 32-bit integers in the
+ * specified array[] by one call. The number of pseudorandom integers
+ * is specified by the argument size, which must be at least 624 and a
+ * multiple of four. The generation by this function is much faster
+ * than the following gen_rand function.
+ *
+ * For initialization, init_gen_rand or init_by_array must be called
+ * before the first call of this function. This function can not be
+ * used after calling gen_rand function, without initialization.
+ *
+ * @param array an array where pseudorandom 32-bit integers are filled
+ * by this function. The pointer to the array must be \b "aligned"
+ * (namely, must be a multiple of 16) in the SIMD version, since it
+ * refers to the address of a 128-bit integer. In the standard C
+ * version, the pointer is arbitrary.
+ *
+ * @param size the number of 32-bit pseudorandom integers to be
+ * generated. size must be a multiple of 4, and greater than or equal
+ * to (MEXP / 128 + 1) * 4.
+ *
+ * @note \b memalign or \b posix_memalign is available to get aligned
+ * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
+ * returns the pointer to the aligned memory block.
+ */
+void
+fill_array32(uint32_t *array, int size)
+{
+ assert(initialized);
+ assert(idx == N32);
+ assert(size % 4 == 0);
+ assert(size >= N32);
+
+ gen_rand_array((w128_t *) array, size / 4);
+ idx = N32;
+}
+#endif
+
+/**
+ * This function generates pseudorandom 64-bit integers in the
+ * specified array[] by one call. The number of pseudorandom integers
+ * is specified by the argument size, which must be at least 312 and a
+ * multiple of two. The generation by this function is much faster
+ * than the following gen_rand function.
+ *
+ * For initialization, init_gen_rand or init_by_array must be called
+ * before the first call of this function. This function can not be
+ * used after calling gen_rand function, without initialization.
+ *
+ * @param array an array where pseudorandom 64-bit integers are filled
+ * by this function. The pointer to the array must be "aligned"
+ * (namely, must be a multiple of 16) in the SIMD version, since it
+ * refers to the address of a 128-bit integer. In the standard C
+ * version, the pointer is arbitrary.
+ *
+ * @param size the number of 64-bit pseudorandom integers to be
+ * generated. size must be a multiple of 2, and greater than or equal
+ * to (MEXP / 128 + 1) * 2
+ *
+ * @note \b memalign or \b posix_memalign is available to get aligned
+ * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
+ * returns the pointer to the aligned memory block.
+ */
+void
+fill_array64(uint64_t *array, int size)
+{
+ assert(initialized);
+ assert(idx == N32);
+ assert(size % 2 == 0);
+ assert(size >= N64);
+
+ gen_rand_array((w128_t *) array, size / 2);
+ idx = N32;
+
+#if defined(BIG_ENDIAN64) && !defined(ONLY64)
+ swap((w128_t *) array, size / 2);
+#endif
+}
+
+/**
+ * This function initializes the internal state array with a 32-bit
+ * integer seed.
+ *
+ * @param seed a 32-bit integer used as the seed.
+ */
+void
+init_gen_rand(uint32_t seed)
+{
+ int i;
+
+ psfmt32[idxof(0)] = seed;
+ for (i = 1; i < N32; i++) {
+ psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
+ ^ (psfmt32[idxof(i - 1)] >> 30))
+ + i;
+ }
+ idx = N32;
+ period_certification();
+ initialized = 1;
+}
+
+/**
+ * This function initializes the internal state array,
+ * with an array of 32-bit integers used as the seeds
+ * @param init_key the array of 32-bit integers, used as a seed.
+ * @param key_length the length of init_key.
+ */
+void
+init_by_array(uint32_t *init_key, int key_length)
+{
+ int i, j, count;
+ uint32_t r;
+ int lag;
+ int mid;
+ int size = N * 4;
+
+ if (size >= 623) {
+ lag = 11;
+ } else if (size >= 68) {
+ lag = 7;
+ } else if (size >= 39) {
+ lag = 5;
+ } else {
+ lag = 3;
+ }
+ mid = (size - lag) / 2;
+
+ memset(sfmt, 0x8b, sizeof(sfmt));
+ if (key_length + 1 > N32) {
+ count = key_length + 1;
+ } else {
+ count = N32;
+ }
+ r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
+ ^ psfmt32[idxof(N32 - 1)]);
+ psfmt32[idxof(mid)] += r;
+ r += key_length;
+ psfmt32[idxof(mid + lag)] += r;
+ psfmt32[idxof(0)] = r;
+
+ count--;
+ for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
+ r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
+ ^ psfmt32[idxof((i + N32 - 1) % N32)]);
+ psfmt32[idxof((i + mid) % N32)] += r;
+ r += init_key[j] + i;
+ psfmt32[idxof((i + mid + lag) % N32)] += r;
+ psfmt32[idxof(i)] = r;
+ i = (i + 1) % N32;
+ }
+ for (; j < count; j++) {
+ r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
+ ^ psfmt32[idxof((i + N32 - 1) % N32)]);
+ psfmt32[idxof((i + mid) % N32)] += r;
+ r += i;
+ psfmt32[idxof((i + mid + lag) % N32)] += r;
+ psfmt32[idxof(i)] = r;
+ i = (i + 1) % N32;
+ }
+ for (j = 0; j < N32; j++) {
+ r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ + psfmt32[idxof((i + N32 - 1) % N32)]);
+ psfmt32[idxof((i + mid) % N32)] ^= r;
+ r -= i;
+ psfmt32[idxof((i + mid + lag) % N32)] ^= r;
+ psfmt32[idxof(i)] = r;
+ i = (i + 1) % N32;
+ }
+
+ idx = N32;
+ period_certification();
+ initialized = 1;
+}